If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-42=0
a = 1; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·1·(-42)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*1}=\frac{0-2\sqrt{42}}{2} =-\frac{2\sqrt{42}}{2} =-\sqrt{42} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*1}=\frac{0+2\sqrt{42}}{2} =\frac{2\sqrt{42}}{2} =\sqrt{42} $
| 1/2(x-)=1/3(x+3) | | 5x-9=13/7x+24/7 | | -x/7=3+1/7 | | -(n+7)=9 | | -9(2x-5)=4(3x+5) | | -24=6t+2t-16 | | 1/5(5x-25)=-2x+3 | | -24=b+13 | | 9x-7+12x-1+3x+4=68 | | x/3+3.2=-1.6 | | 1.8+0.5(y+6)-8=3.8 | | -2(3-2x)=5(x+4) | | 2k^2=k^2+16 | | .1x-22+.3x-54=90 | | -18+m=32 | | 4x-12=10x+24 | | 3m-21=12m+30 | | x/2+3/2=-1 | | 4((3-3y)/8)+5y=-23 | | (x)+(x+6)+(x+12)+(x+18)+(x+24)=100 | | (x+6)(x+8)=400 | | (x+6)(5)=100 | | x/3+x/5=10 | | x-13=1/4(x+13) | | -6=4x+14 | | 3(2x+2)=6(x+6) | | 12=4+2/3m | | 43=x+70 | | 5(2-x)-3(4-2x)=30 | | x+3x+2x+4=24+5+15+x | | 38=x+60/2 | | 25m^2+10m+1=0 |